The generator matrix 1 0 1 1 1 3X+2 1 1 2X 1 1 X+2 2 X 1 1 1 1 3X 2X+2 1 1 1 1 2 1 1 1 1 1 1 1 1 X+2 2X 1 1 X 1 1 1 1 1 1 X 2 2X X+2 3X+2 2X 2 X 3X+2 0 0 X X+2 3X+2 2 2X+2 2 X X X+2 X+2 2 3X X 1 1 2 2X 2X 1 1 1 1 2X+2 3X+2 1 1 X 3X+2 1 1 0 1 X+1 3X+2 3 1 2X+3 0 1 3X+2 X+1 1 1 1 2X+2 X+3 X 2X+1 1 1 2X+2 1 3X+3 X 1 X+1 2X X+2 2X+3 2X+3 2X 3X+1 3X 1 1 X+3 2 1 2X+1 X+2 X+3 2 2X+3 3X 1 1 1 1 1 1 1 1 1 1 1 X+2 1 1 1 1 1 3X 1 1 1 1 1 1 1 3X+1 X 1 1 2X+2 X 2X 3X 1 1 0 2X+2 X+2 1 X+1 0 0 0 2 0 0 0 0 2X+2 2 2 2X+2 2 2 2X 2 2X+2 2X+2 2X 2X+2 2X 2X 2X 2 2X 2X+2 0 2 0 2 2 2X 0 2X+2 2X+2 2X 2X 2X+2 2X 2X+2 2 2X 0 2X+2 2X 2 0 2X+2 0 2 0 2X 2 2X+2 2 2X+2 2X+2 0 2X 2X 2 2X+2 2X+2 2 2X 2X+2 2X+2 0 2X 2 2X 0 0 0 0 2X 0 0 0 2X+2 2X+2 2X 2X+2 2X 0 0 0 0 0 2X+2 2X 2X+2 2 2 2X 2X 2X+2 2X+2 0 2 2X+2 2X 0 0 2 2X 2X 2X+2 2 2 2X 2X 2X 0 0 2 2 2 2 2 2X 0 0 2X+2 2X+2 2X+2 2X+2 2X+2 2X 2X 2X+2 0 0 2 0 2 2X+2 2X 2X 2 2 2X+2 0 0 2 2X+2 2X+2 2X+2 0 2 0 0 2X 2X 2X 2X+2 2X 2X+2 2X 2 0 2X+2 0 2 2 0 2X+2 2X 2X+2 0 2X generates a code of length 85 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 80. Homogenous weight enumerator: w(x)=1x^0+183x^80+364x^81+310x^82+484x^83+528x^84+496x^85+430x^86+512x^87+280x^88+272x^89+146x^90+44x^91+28x^92+8x^96+4x^97+2x^110+2x^112+1x^116+1x^124 The gray image is a code over GF(2) with n=680, k=12 and d=320. This code was found by Heurico 1.16 in 0.781 seconds.